1, x = 2+t

^{2}, y = t^{2}+ t^{3 }1, x = 2+t^{2} , y = t^{2} + t^{3 }

Tutors, please sign in to answer this question.

Seattle, WA

When finding total length of a curve, you must first find an expression for the differential vector along your path of interest, ds.

You know from the pythagorean theorem that the length of any vector in your space is going to be the sqrt(x^2+y^2+z^2....+...)

In your case, you have differential elements dx and dy in your measure space.

So the differential arc length ds = sqrt(dx^2 + dy^2)

= sqrt(1 + (dy/dx)^2)dx or sqrt(1+(dx/dy)^2)dy whichever you prefer

By the chain rule you know that dx = f'(t)dt and dy = g'(t)dt.

Algebraically, you know that dy/dx = f'(t)dt/g'(t)dt

leaving us with ds = sqrt(1+f'(t)/g'(t))f'(t)dt or sqrt(1+g'(t)/f'(t))g'(t)dt

the length then is simply the integral of ds from a to b.

Or, in a more clear form,

Integrate sqrt((dx/dt)^2 + (dy/dt)^2) with respect to t from 0 to 2p.

I will leave the actual arithmetic to you.

Cheers,

--Tim

Amaan M.

Math/Economics Teacher

New York, NY

5.0
(70 ratings)

John P.

Tutor of math and physics, recent college graduate

Short Hills, NJ

5.0
(21 ratings)

- Math 9705
- Calculus 1 490
- Integration 110
- Precalculus 1527
- Derivatives 205
- Differentiation 125
- Calculus 2 338
- Multivariable Calculus 25
- Calculus 3 181
- Vector Calculus 34