Search 75,604 tutors
FIND TUTORS
Ask a question
0 0

int(sec(x)+tan(x))dx

Tutors, please sign in to answer this question.

2 Answers

= (1/cos x   +    sin x/cos x) dx

= (1 + sin x)/cos x   dx

= (1 + sin x)(1 - sin x)/(cos x)(1 - sin x)   dx

= (1 - (sin x)^2)/(cos x)(1 - sin x)  dx

= (cos x)^2/(cos x)(1 - sin x)  dx 

= cos x/(1 - sin x)  dx

Integrate:

- ln (1 - sin x)

 

∫(sec(x)+tan(x))dx

= ∫ 1/(sec(x) - tan(x)) dx, after multiplying the top and the bottom by sec(x) - tan(x) and using the identity sec^2(x) = tan^2(x) + 1

= ∫cos(x)/(1 - sin(x)) dx

= ∫-1/(1 - sin(x)) d(1- sin(x)), mental substitution, or you can let u = 1-sin(x)

= -ln(1-sin(x)) + c