Factor the differences of two squares. Be sure to factor completely.

X^{6}-64

WYZANT.COM
CREATE FREE ACCOUNT
Sign In

Access thousands of free resources from expert tutors

Comment on posts and interact with the authors

Ask questions and get free answers from tutors

View videos, take interactive quizzes, and more!

Factor the differences of two squares. Be sure to factor completely.

X^{6}-64

Tutors, please sign in to answer this question.

There are two ways at least you can go to factor X^{6}-64.

Method 1. Treat X^{6}-64 as the difference of two squares first.

X^{6}-64

= (x^{3})^{2} - 8^{2}

= (x^{3} + 8)(x^{3} - 8)

= (x+2)(x^{2}-2x+4)(x-2)(x^{2}+2x+4)

Method 2. Treat X^{6}-64 as the difference of two cubes first.

x^{6}-64

= (x^{2})^{3} - (4)^{3}

= (x^{2} - 4)(x^{4} + 4x^{2} + 16)

= (x+2)(x-2)[(x^{2}+4)^{2} - (2x)^{2}], by completing the square

= (x+2)(x-2)(x^{2}+2x+4)(x^{2}-2x+4)

x^{6}-64= (x^{3})^{2 }- (8)^{2
}

= (x^{3}+8) (x^{3}-8)

=(x+2)(x^{2 }-2x+4) (x-2)(x^{2} +2x+4)

Kayla, for any polynomial, [f(x)]^2 - [g(x)]^2, will factor as [f(x)-g(x)] times [f(x)+g(x)], so if you set f(x) = x^3 and g(x) = 8, you can rewrite the equation as [x^3]^2 - [8]^2, which you can factor as the difference of two squares. The factor "completely" part of the question is important because once you get your two terms, you will find that they are both a sum and difference of cubes, which also have a special factoring process. You can find a good illustration of that process (assuming your text does not provide illustrations) at http://www.cliffsnotes.com/study_guide/Sum-or-Difference-of-Cubes.topicArticleId-257309,articleId-257149.html

I'll leave the rest to you, but feel free to email or ask any follow-up questions if this does not make sense. John

- Algebra 903
- Algebra 1 622
- Math Help 588
- Algebra 2 485
- Trigonometry 154
- Geometry 260
- Prealgebra 37
- Science 34
- Word Problem 401
- Precalculus 102