Search 75,753 tutors
FIND TUTORS
Ask a question
0 0

how to draw and explain a graph which best represents the distribution of electron probablity in an "s" orbital (y=axis probability, x-axis=distance from nucleu

Tutors, please sign in to answer this question.

2 Answers

I don't think this was worded wonderfully and I see where it can be confusing.

Pretend that the center of an atom is sitting on the origin of you xy graph, at (0,0)

y axis is % of finding an electron and x axis is distance from the center of atom; or for us from (0,0)

We know as we move down the periodic table we get more and more shells of electrons. On your graph we only want to graph the farthest edge of the shell because "the probability distribution indicates the likelihood of finding the electron at the radial distances"; for now we don't need to think about what electrons may exist between their shell and the shell that came before them.

As you increase distance, x axis, you will be moving through your sublevels. You should label your x axis starting from the origin as:  0  1s  2s  2p  3s  3p  4s  3d  4p  etc...

Your lie connecting each of these x values should start at (0,0) there is no chance of having an electron in the nucleus. The line should make may peaks at your specific sublevels (0 1s 2s 2p 3s 3p 4s 3d 4p etc...). But because you loose probability of finding electrons in the distance between, for example 3p and 4s, you need to show you know this decreased probability exists. So, you peak at the sublevels and you dip inbetween the peaks.

Hope this helps

1) Draw the vertical y-axis, and horizontal x-axis. 2) For the vertical, label probability, or %. 3) On the x-axis, label "Distance from nucleus." At the origin, the distance from the center of the nucleus is zero, and you will not find any electrons there, so probability of finding an electron is zero. As the radius increase outward, you'll reach the the first energy level, the 1s. Here the probability reaches to its maximum for the hydrogen atom. Then as the energy level increases, we travel further out from the nucleus, and the probability decreases again. So you get down, up, down kind of figure. So the probability distribution indicates the likelihood of finding the electron at the radial distances form the nucleus. The probability distribution is also represented by the shaded spheres... The amount of shading represents the electron density, or probability for the atom, such as the electron of the hydrogen 1s orbital.