Search 72,570 tutors
FIND TUTORS
Ask a question
0 0

Solve for x: sin (inverse) x + sin (inverse) 2x = pi/3

Tutors, please sign in to answer this question.

2 Answers

arcsin(x) + arcsin(2x) = pi/3

t = arcsin(x)
p = arcsin(2x)

t + p = pi/3

sin(t+p) = sin(pi/3) =
= sin(t)cos(p)+cos(t)sin(p) = sqrt(3)/2

x sqrt(1-4x^2) + 2x sqrt(1-x^2) = sqrt(3)/2

x^2 (1-4x^2) + 4 x^2 sqrt(1-5x^2+4x^4) + 4x^2 (1-x^2) = 3/4

x^2 - 4x^4 + 4x^2 - 4x^4 + 4 x^2 sqrt(1-5x^2+4x^4) = 3/4

5x^2 - 8x^4 + 4 x^2 sqrt(1-5x^2+4x^4) = 3/4

4 x^2 sqrt(1-5x^2+4x^4) = 8x^4 - 5x^2 + 3/4

16 x^4 (1 - 5x^2 + 4x^4) = (8x^4 - 5x^2 + 3/4)(8x^4 - 5x^2 + 3/4)

16 x^4 - 80x^6 + 64x^8 =
8x^4(8x^4 - 5x^2 + 3/4) - 5x^2(8x^4 - 5x^2 + 3/4) + 3/4(8x^4 - 5x^2 + 3/4)

16 x^4 - 80x^6 + 64x^8 =
64x^8 - 40x^6 + 6x^4
- 40x^6 + 25x^4 - 15/4 x^2
+ 6x^4 - 15/4 x^2 + 9/16

0 = 21 x^4 - 15/2 x^2 + 9/16

0 = 7 x^4 - 5/2 x^2 + 3/16

0 = 112 x^4 - 40 x^2 + 3

h = - -40/(2*112) = 20/112 = 10/56 = 5/28

k = 3 - 112(5/28)^2 = 21/7 - 25/7 = -4/7

x^2 = 5/28 +- sqrt(- -4/(7*112)) = 5/28 +- sqrt(1/(7*7*4)) = 5/28 +- 2/28

x^2 = 1/4 or 3/28

x = +- 1/2 or +- sqrt(21)/14

+sqrt(21)/14 ~= 0.32732683535399, which is what GeoGebra indicates:
http://www.wyzant.com/resources/files/262177/sum_of_arcsines

What’s the logic in discarding the other 3 answers?

I suppose they will not check; i.e., are extraneous (we did square a couple of times).

Anyone want to do the checks; I’m tired.
 
====
 
Thanks for checking, Parviz!
 
I also decided to do a spreadsheet check and here it is:
 
     x       asin(x)  asin(2x)   B+C   =pi/3?
  0.5000  0.5236  1.5708  2.0944 FALSE
-0.5000 -0.5236 -1.5708 -2.0944 FALSE
 0.3273  0.3335   0.7137  1.0472 TRUE
-0.3273 -0.3335 -0.7137 -1.0472 FALSE

Comments

Hello Steve:
  I am thinking of
   
     X + 2X = ∏/ 3         
                                               How otherwise can be true , other than
 
         X = ∏/9 = 0.3491  , your answer is 0.3273
 
           testing your answer:
                           Sin-1 ( 0. 3273) + Sin-1( 0.654 ) = 1.0463 rad = 59.95°
 
                            Sin-1(0. 3273) = 19. 09        Sin-1 ( 0.654) = 40.84°                   
Sin -1(  0.349) = 20. 43º
 
 Sin -1( 0.349) + Sin-1( 0.698) =
 
            20.48° + 44.26° = 64.74°
Thanks, Parviz!
 
I decided to use a spreadsheet to do the complete check and here it is:
 
     x        asin(x)  asin(2x)   B + C  =pi/3?
  0.5000  0.5236   1.5708   2.0944  FALSE
-0.5000 -0.5236  -1.5708  -2.0944  FALSE
 0.3273  0.3335    0.7137   1.0472  TRUE
-0.3273 -0.3335  -0.7137  -1.0472  FALSE
A° = Sin-1 X       B° = Sin -1 2X     Cos A = √( 1 - X^2)     Cos B = √( 1 - 4X^2)
 
    Sin ( A + B ) =  Sin A Cos B + Cos B Sin A
 
       Sin ( ∏/ 3 ) = X √( 1 - 4X^2) + 2X √( 1- X^2)
 
            √3 / 2 = X √(1 - 4 X^2 ) + 2X √(1 - X^2)
 
                This equation need Graphic calculator to solve.