Search 72,309 tutors FIND TUTORS
Search for tutors
Ask a question
0 0

Help me with this problem!

Tutors, please sign in to answer this question.

2 Answers

Given:   a + b + c = 1032
 
Given:   b = 3a
 
Given:   c = a/2 + 60
 
Substitute:  a + (3a) + (a/2 + 60) = 1032
 
Solve for a:
Combine like terms: 4a + a/2 + 60 = 1032
 
Subtract 60 from both sides:  4a + a/2 = 972
 
Multiply both sides by 2:  8a + a = 1944
 
Combine like terms:  9a = 1944
 
Divide both sides by 9:  a =  216
 
a= 216
 
b = 3 * 216 = 648
 
c = (216/2) + 60 = 168
 
PROVE:  216 + 648 + 168 = 1032
Hi Sarah,
 
 
Let the three numbers be x, y and z
 
The sum of three numbers=1032
 
 x+y+z=1032      equation 1
 
The second number is three times the first number
y=3x    equation 2
 
The third number is 60 more than half of the first number
z=60+(1/2)x    equation 3
 
substitute the values of y and z in equation 1
 
x+3x+60+(1/2)x=1032
   (9/2)x=1032-60
   (9/2)x=972
 
 x=(972)(2/9)
   
x=216
 
substitute the value of x in equation 2
 
y=3x
y=3(216)=648
 
substitute the value of x in equation 3
 
z=60+(1/2)x
z=60+(1/2)(216)
 =60+108
  =168
 
so the answer is x=216, y=648 and z=168