The problem is "Suppose an elevator is 400 feet above the ground. It descends at a steady rate. After 15 seconds, the elevator is 250 ft above the ground." I need to find a linear function for the height of the elevator as a function of time. I know it
is descending 150 ft per 15 seconds, but I don't know what to do from there.

The general linear equation is of the form y = mx + b

We are required to form a linear equation for the elevation of the elevator from the ground in terms of time. If we call y as the height and x as the time, then applying the general linear model y = mx + b, the question reduces to finding m and b using
the information given in the question. At time x = 0 seconds the height y is 400 feet. Applying this data in our model, we get 400 = m * 0 + b

The above equation reduces to b = 400

Using the value of b above in our model, it becomes y = mx + 400

When x = 15 seconds we know that the height is 250. Applying this data in the model equation above, we get

250 = 15 * m + 400

or m = -10

So our linear model is y = -10x + 400 where x is time in seconds and y is the elevation of the elevator with reference to the ground expressed in feet.

## Comments

ascend)