What property do you need to use? Can you demonstrate an example of utilizing factoring to solve equations?

Don't forget to include a quadratic equation

Don't forget to include a quadratic equation

WYZANT.COM
CREATE FREE ACCOUNT
Sign In

Access thousands of free resources from expert tutors

Comment on posts and interact with the authors

Ask questions and get free answers from tutors

View videos, take interactive quizzes, and more!

Don't forget to include a quadratic equation

Tutors, please sign in to answer this question.

Hi Harry,

ax^{2} + bx + c = 0 is a quadratic equation where a, b and c are all numbers.

When factoring a quadratic equation you want to find two numbers (z,y) that satisfy the following if a = 1:

- (z)(y) = c
- z + y = b

x + z = 0 or

x + y = 0

Example:

Solve x^{2 }+ 6x + 8 = 0.

(2)(4) = 8 and 2+4 = 6. Therefore the factored form is (x + 2)(x + 4) = 0.

=> x + 2 = 0 => x = -2 OR

x + 4 = 0 => x = -4.

---------------------------------------------------------------------------

If a is not equal to 1 then you want to find four numbers (e,d,z and y) that satisfy the following:

- (e)(d) = a
- (z)(y) = c
- (e)(y) + (d)(z) = b

ex + z = 0 => ex = -z and x = -z/e OR

dx + y = 0 =>

Example:

Solve 6x^{2} + 11x + 3 = 0

(2)(3) = 6, (3)(1) = 3 and (2)(1) + (3)(3) = 11, therefore (2x + 3)(3x +1) = 0

2x + 3 = 0 => x = -3/2 OR

(3x + 1) = 0 => x = -1/3

Hope this helps!

( X + a) ( X + b) = X^{2} + ( a +b) X + ab (1) ( X + a) 2 = X^{2} + 2aX +a^{2} (2)

( X +a ) ( X -a )= X^{2 -}a^{2} (3)

The 3 above identities are key to factoring quadratic, and finding the roots

The 3 above identities are key to factoring quadratic, and finding the roots

In general every quadratic, trinomial aX^{2} + bX + c is generated by multiplication of 2 binomial (linear) expression in the form of 3 identity given above, and subsequently any given Ttrinomial ( quadratic), can

be factored to binomial factors i.e.( X + a) ( X + b) = X^{2} + ( a +b) X + ab, that is used in evaluation of roots of the quadratic.

, .

In other words identities (1), (2) , ( 3) can work both ways.

given a quadratic like : X^{2} + 7X + 10

here we see that ( a + b) = 7 ab =10

a = 2 b =5 is the answer, therefore X^{2} + 7X + 10 = ( X +2) ( X + 5 )

equation (2) is a special case of (1) where a=b , a+b = 2a , ab=a2

equation (3) is a special case of ( 1) where b = -a, a + ( -a) = 0 , ab = a2

These 3 identities are used in factoring a quadratic.

Equation (1) is factorable if there exists 2 whole number whose sum is ( a+ b), and product =ab.

If the answer of the system of equation is not a whole number, then have to do factoring by competing the square, and come up with a factors of irrational and complex numbers, yielding to Irrational and complex roots .

given a quadratic like : X

here we see that ( a + b) = 7 ab =10

a = 2 b =5 is the answer, therefore X

equation (2) is a special case of (1) where a=b , a+b = 2a , ab=a2

equation (3) is a special case of ( 1) where b = -a, a + ( -a) = 0 , ab = a2

These 3 identities are used in factoring a quadratic.

Equation (1) is factorable if there exists 2 whole number whose sum is ( a+ b), and product =ab.

If the answer of the system of equation is not a whole number, then have to do factoring by competing the square, and come up with a factors of irrational and complex numbers, yielding to Irrational and complex roots .

- Math 1333
- Math Help 593
- Math Help For College 136
- Math Question 142
- Algebra 904
- Math Problem 80
- Algebra 1 632
- Algebra 2 488
- Algebra Help 205
- Slope Intercept Form 66