< = angles
determine how many solution exist
<A = 84 , a = 25 , b=15
Solutions ----
< B = __ <C = ___ c=__
<B= __ <C=__ c=__
< = angles
determine how many solution exist
<A = 84 , a = 25 , b=15
Solutions ----
< B = __ <C = ___ c=__
<B= __ <C=__ c=__
25 15 15 * sin 84
———— = ——— ---> sin B = ——————
sin 84 sin B 25
sin B ≈ 0.5967 ---> B ≈ 37^{0} , then measure of angle
C = 59^{0}
c^{2} = a^{2} + b^{2} - 2ab cos C ---> c^{2} ≈ 625 + 225 - 750 * 0.5150381 ≈ 463.7
c ≈ 21.5
sin(B)/15 = sin(84)/25
Solve for B,
B = 36.63 ° <==The only answer for B, since the other solution B = 180 - 36.63 = 143.37 ° is impossible because the sum of angle measures for a triangle must be 180 °.
C = 180 - A - B = 180 - 84 - 36.63 = 59.37 °
c/sin(C) = 25/sin(84)
c = 21.63
Comments
how many solutions?